
Disclosing the secrets of memristors and
implication logic

Jens Bürger

Abstract—Memristors have become interesting to many
research areas within the last years. This paper discusses
memristors in the context of digital logic synthesis. Giving
a brief overview about memristor characteristics it is
explained how they can be used in digital logic. It will be
explained how memristors map to digital logic operations
and how this can be used with common synthesis methods
to turn an arbitrary boolean function into a logic circuit.
This will highlight several fundamental differences -
limitations as well as chances - between memristive and
standard digital logic. The paper closes with referencing
to essential publications and to address future work.

Keywords: Memristor, IMPLY logic, material implication

I. MEMRISTOR

A. Background

Theoretically introduced was the memristor by Leon
Chua in 1971 [3]. As a two terminal passive compo-
nent Chua describes the memristor as the fourth basic
element along resistors, capacitors and inductors. The
word memristor is a composition of memory and resistor
which are the two primary attributes of a memristor.
After the presentation of the memristor in 1971 it found
only little attention due to its missing practical imple-
mentation. This changed in 2008 when HP announced
the first realization of a memristor [8]. With the physical
implementation available the memristor is now subject
to various research projects. This paper is structured as
follows: The continuation of the first part will discuss
characteristics and the functionality of memristors. In the
second part implication logic as an application in digital
logic is presented.

B. Functionality

As was said before a memristor has two main char-
acteristics: memory and resistance. While a memris-
tor is driven with a voltage that does not exceed a
certain threshold it behaves resistive (not necessarily
linear though). Simplified a memristor has two different
resistances (often conductance is used to describe this

Fig. 1. Simplified IV plot of a memristor. Taken from [8]

as well). Exceeding the mentioned threshold voltage the
memristor changes its resistance corresponding to the
polarity of the applied voltage. The memory character-
istic is due to the fact that the resistance will stay the
same until the memristor is driven to the other resistance
state. This implies that the resistance of the memristor
can be used as binary information.

A good way to understand a memristor is to look at
its IV plot. The IV plot taken from [8] is an idealized
representation to better illustrate the main characteristics
of memristors. In an IV plot the slope of a line describes
the resistance of a component. The steeper the slope
the lower the resistance as for the same applied voltage
higher currents flow. In this particular case we have two
linear slopes and hence two linear resistances (note that
this is a simplified representation and real memristor
models do not have a linear resistance). The vertical lines
are the transitions between the resistances.

When in the low resistance state (steep slope) and
one increases the voltage over the memristor steadily
it behaves like a linear resistor until the voltage VOpen

1



VOpen Voltage at which the memristor changes
from low to high resistance

VClose Voltage at which the memristor changes
from high to low resistance

VClear Application specific voltage to securely
switch resistance state from low to high

VSet Application specific voltage to securely
switch resistance state from high to low

VCond Voltage level necessary when performing
digital operations with two memristors

closed Memristor is in the low resistance state.
This is considered as logic ’1’

open Memristor is in the high resistance state.
This is considered as logic ’0’

Input memristor A memristor that holds an input signal
and is not changed as a result of the
computation

Working memristor A memristor that holds either the FALSE
value ’0’, an input value or the result of a
computation.

TABLE I
MEMRISTOR NAMING CONVENTIONS

is exceeded. In this moment the resistance switches
from low to high. A further increase of the voltage
does not have any effect. To set the memristor back
to low resistance one has to apply a negative voltage
greater than VClose. Remember that the resistance of the
memristor is a non-volatile state as long as one is within
VOpen and VClose. This means that the resistance stays
the same even though the memristor is taken off from
power. When applying voltage again it will show the
same resistance as before. With regard to digital logic
this can be mapped to logic ’0’ and logic ’1’.

Table I introduces some naming conventions relevant
to memristors and its application in digital logic.

II. IMPLICATION LOGIC

A. Background

Boolean algebra describes logic operators that based
on input values ’0’ and ’1’ compute an output value.
Among others, commonly known operators are AND,
OR and NOT. A logic operator not so well known is
material implication. The notation of material implica-
tion is p→q (spoken: p implies q) and its truth table is
given in figure 2. Putting the truth table into words, if p
is true than the output is equal to q. If p is not true than
the output is true.

The relevance of material implication in a context of
memristors was shown in [8] and will be explained in

p q p→q
0 0 1
0 1 1
1 0 0
1 1 1

Fig. 2. IMPLY truth table
Fig. 3. Symbol of IMPLY gate

Fig. 4. IMPLY build with two memristors and one resistor and its
corresponding logic symbol. Taken from [8]

detail here as well. It was proven that material implica-
tion can be done with only 2 memristors and a single
resistor. This is a highly area efficient implementation
of a logic gate and hence is the motivation for exploring
memristors within digital logic applications. The next
paragraphs will introduce material implication based
on memristors - called implication logic. When talking
about gates itself the expression IMPLY gate will be
used.

B. IMPLY gate

As was mentioned before the implementation of an
IMPLY gate based on memristors can be done with as
little as two memristors and one resistor as shown in
figure 4. In this illustration the memristors are drawn
as simple switches - either open or closed. This is
due to the fact that in digital logic memristors are
considered as two-state elements. The non-linear analog
behavior between VOpen and VClose is not relevant for
the computation itself.

Discussing the functional principal of an IMPLY gate
the terms defined in table I will be relevant. As can be
seen in figure 4 two memristors suffice to compute the
implication operation. A working memristor was defined
as holding an input signal and being able to change its
state and keeping the value. In this case memristor Q is
a working memristor, whereas P is an input memristor.
Before an IMPLY operation the memristors have to

2



Fig. 5. Simplified IMPLY gate illustrating conditions for the
workmemristor to switch to ’1’ or stay in ’0’ state. (a) voltage drop
over q is VSet-VCond and hence not enough to change state of q;
(b) As p is open the voltage drop over q is almost VSet and hence
switches q to logic ’1’

be set to the corresponding input values. Once both
memristors are set to either ’0’ or ’1’ the computation
can be performed. This is done by applying the voltage
VCond to memristor P and VSet to memristor Q. Looking
back at figure 1 one can see that the magnitude of
VCond is not sufficient to switch the memristor to another
logic state. Applied to memristor P this insures that the
input memristor will not change its state. VSet applied
to Q does have the magnitude to change the state of
the memristor. But as both memristors form a voltage
divider with Rg, the voltage drop over input memristor
P is determining whether Q is switching or not. An
illustration of that is given in figure 5.

A fact that is barely mentioned in other papers,
but crucial for the understanding concerns the voltage
applied to Q. As was mentioned VSet and only VSet is
applied to Q as a working memristor. This implies that
only the transition from ’0’ to ’1’ can be performed, not
the transition from ’1’ to ’0’ as this would require Vclear.
Having a look at the truth table of the IMPLY operation
it becomes clear that this is sufficient. If Q = ’0’ it might
change to ’1’, but with Q = ’1’ the result will be ’1’ as
well.

III. BUILDING NAND WITH IMPLY

While the first two sections gave an introduction to
memristors and IMPLY logic it will now be discussed
why this is relevant for digital logic design. IMPLY
together with FALSE (setting a signal to ’0’) is a
complete set of operators. This means that any arbitrary
logic function can be realized using these two operations.

Fig. 6. NAND gate build from two IMPLY gates

Fig. 7. NAND memristor implementation (from [8])

Nowadays the most common gate in digital design and
synthesis is NAND. This section will show how NAND
is computed with IMPLY and give some more insights
to memristive computing.

The memristive NAND operation was first shown in
[8]. The logic representation of NAND build by IMPLY
is shown in figure 6. This shows that a NAND can
be replaced with two IMPLY gates. Out of the two
memristors necessary for an IMPLY operation the non-
inverted input of an IMPLY gate is computed with
the working memristors. This memristor will also hold
the output value and hence be the input for the next
gate. This is important as a single memristor can be
used for several subsequent operations. This leads to the
conclusion that two IMPLY gates do not map directly
to 4 memristors (as one IMPLY requires 2). In the case
of the NAND as shown in figure 6 three memristors are
required - two input and one working memristor.

The memristor/resistor network of a memristive
NAND can be seen in figure 7. Compared to IMPLY
it is only extended with one more memristor. The two
inputs - p and q - are assigned to the inverted inputs
of the gates (note that the inverted inputs always are
the input memristors and the non-inverted input is the
working memristor). The working memristor s of this
implementation is used for computation for both IMPLY
gates and stores the overall output result.

Reusing memristors within a logic function implies a

3



TABLE II
NAND SEQUENTIAL TRUTH TABLE (FROM [8])

sequential operation. The sequence of performing NAND
with memristors is shown in table II. In a first step the
FALSE operator is applied to s in order to set it to
’0’. The next steps is to perform p → s′ followed by
q → s′′. The need for sequential operation has basically
two reasons. The first, as can be seen for the NAND
gate, is that the right IMPLY gate can’t compute a result
without the result from the left gate. This is a classic
example. But there is an IMPLY specific reason. As
all memristors are connected to the same resistor they
all form a single resistive network. Therefore driving
additional memristors would affect the voltage levels and
the functionality.

IV. SYNTHESIS FOR N-INPUT BOOLEAN FUNCTIONS

We have seen how IMPLY gates can be used to build
a 2-input NAND gate. This allows to build arbitrary
circuits based on IMPLY gates. Lehtonen and Laiho
proved that an arbitrary n-input boolean function can be
computed with only n+ 2 memristors [7]. This section
will introduce approaches to algorithmically synthesize
n-input boolean functions realized with IMPLY gates.

A. Method I - NAND form with positive literals

This first method follows an easy algorithm to step by
step find prime implicants consisting of positive literals
only. The algorithm searches all minterms and checks
the corresponding literals. Negative literals are discarded,
postive ones are kept. The resulting cube (as negative
literals might be dropped, the cube is likely to get
bigger) will be checked for maxterms. Due to the fact
that negative literals will be dropped, often one cannot
cover all minterms in a single step. In a second step all
min- and maxterms are inverted and the procedure starts
over again. Found minterms will be replaced with ”don’t
cares”. This will enable for creating larger cubes step by

Fig. 8. (a) Prime term with positive literals (abc), (b) Replace prime
term with don’t care, (c) Invert, (d) Prime terms with pos. literals
(ab,ac,bc), (e) Replace prime terms with don’t cares, (f) Invert, (g)
Prime terms with pos. literals (a,b,c)

Fig. 9. Logic circuit for parity function. NAND gates will be
replaced with the circuit from figure 6. The colors in the circuit
correspond to the steps from figure 8 as follows: blue - (a), green -
(d), purple - (g), red - (c,f). The black IMPLY gates represent the
NAND form for building IMPLY circuits

step. For illustration purpose this method is applied to
the three input parity function. In figure 8 the detailed
steps of this method are shown on the corresponding
k-maps. Once all minterms are covered, the circuit is
drawn (figure 9).

The method is described in algorithm 1. It shows how
to search for prime implicants. The algorithm tries to
find all minterm and checks the corresponding literals. To
give an example - for a minterm abc = 001 the algorithm
would discard a and b (as they are negative literals) and
keep only c. In the next step it checks the cube c for
maxterms. For the minterm abc = 111 the algorithm
only checks this one-minterm-sized cube.

This method has created an IMPLY circuit with the

4



Algorithm 1 Find prime implicants with positive literals
while Not all minterms covered do

while Not all minterms checked do
Select minterm
Keep positive literals only
if Cube includes no maxterm then

Save prime implicant
end if

end while
Replace covered minterms with don’t cares
Invert minterms and maxterms

end while

depth of 2 (maximum of 2 working memristors required
at a time). The advantages of this approach is the
minimum number of working memristors as well as
its SOP based approach. This process could be easily
integrated in existing synthesis tools.

B. Method-II - including negative literals

As was described, the first method did only allow
positive literals. The reason for that is to obtain the
minimal number of working memristors. If one can allow
for one additional working memristor prime implicants
that include negative literals can be used as well. The
additional memristor accounts for the negative literals
that need to pass an inverter. The inverter combined with
a NAND gate requires 2 working memristors for com-
putation. The third working memristor is used to store
intermediate results from other NAND gates. Figure 10
illustrates this for better understanding. As always, first
the result of the lower branch of the right most IMPLY
gate is computed. This result is stored in one working
memristor (red line). After this b is inverted with an
IMPLY and the result is stored in the second working
memristor (blue line). In order to invert signal a as well
one more working memristor is required (green line).

For the example of the parity function using negative
literals does result in four prime implicants connected,
like in Method-I, in a NAND form. Each implicant is a
three input NAND gate with positive or negative inputs
that would be replaced with IMPLY gates as well. In
the case of the parity function it does not yield better
performance (using less computaional steps). Compared
to the first method with 21 steps this method requires 22
steps for the complete computation. The reason for that
is the relative high number of negative literals within the
prime implicants. Whereas Method-I does the inversion
on a multi-input NAND, Method-II does it on each

Fig. 10. This circuit shows the function ab̄ + bc. The colored lines
represent the required working memristors.

Fig. 11. Three input parity IMPLY circuit when allowing for
negative literals. Note that the NAND gates need to be replaced
with the corresponding IMPLY gates. Each positive input signal to a
NAND gate will require a single step to compute. A negative input
signal will require two steps.

negative literal. Using negative literals might result in
better performance if the number of negative literals is
relatively low compared to the overall number of literals.
If either the one or the other method can create a better
solution is function specific and can’t be generalized.

C. Method-III ON/OFF list

Another method to minimize boolean expressions al-
gorithmically is the ON/OFF list. This method compares
the literals of the min- and maxterms in order to find
prime implicants. This method will be demonstrated
on the three input parity function to demonstrate its
principle (note: as it is a SOP based method and the
parity function can’t be really optimized with SOP, it
will not result in a better solution than the other two
shown above).

For the truth table of the parity function please refer
to figure 8. Figure 12 shows the ON/OFF list creation in
three steps for when only positive literals are allowed. As
already mentioned, this will result in a solution with the
minimum number of working memristors. All minterms
are written on top of columns, all maxterms at the
beginning of the rows. They are then checked against
each other. The literals are sorted corresponding to abc.

5



Fig. 12. ON/OFF list for parity function based on positive literals
only

Fig. 13. ON/OFF list for parity function based on positive and
negative literals

If the literal in the ON term is equal to the one in the
OFF term this literal will be discarded. For a positive
literal in the ON term and the corresponding literal in
the OFF term being negative the positive literal will be
part of the result. Vice versa (positive literal in OFF term
and negative in ON term) it would generate a negative
literal for the result. As these are not allowed for this
example this literal will be dropped. If more than one
literal is the result of a comparison they will be written
in the OR form. All terms of one column will than be
multiplied and the result is an (prime) implicant. If the
column contained an x (no valid literal found) than this
column didn’t generate a prime implicant.

The restriction to only positive literals leads to the
three step procedure (steps (a),(b) and (c)). After each
step the min- and maxterms are inverted which leads
to an additional IMPLY gate as inverter. As already
mentioned, this approach created the same result as
Method-I (figure 9).

When allowing for an additional work memristor one
can use negative literals as well. The ON/OFF list for
this is shown in figure 13. It requires only one step, but
yields more complex prime implicants. However, this is
the exact same solution as found for Method-II.

D. Signal generator for sequential implication logic

Another aspect relevant to IMPLY logic is the signal
generator driving the memristors. As shown in figure 7
all memristors are attached to a driver. These drivers
have to be controlled by a signal generator. The sig-
nal generator is executing the sequential operations by
driving the corresponding memristors with either VSet or
VCond depending on the circuitry. Therefore the signal
generator can be kept very simple. It only applies stored
bit patterns in a certain interval to the output drivers.

Nevertheless a signal generator (even in it’s simplest
implementation) would not be worth implementing for
driving a couple of memristors. The power of this
technology has an effect when replicating the boolean
function a hundred, a thousand or even more times.
These can be driven by the same signal generator as
all functions compute the same sequence. Among oth-
ers, applications like computer vision, data mining or
pattern recognition could greatly benefit from such an
implementation.

Table III shows the signal generator pattern for the
three input parity function based on positive literals. The
table shows the required 21 steps and in each step one
memristor is driven with VSet and another with VCond. At
this point the fundamental difference between standard
digital logic and memristive logic becomes clear again.
With standard gates the parity function can be computed
with three XOR gates within 1 clock cycle. Using
memristors it requires much more steps and the clock
cycles for memristors will be some order of magnitude
higher than for CMOS logic. Again, only a massively
parallel implementation of memristors can make up for
these differences.

E. Notation for IMPLY logic

Within this paper the working principle of IMPLY
logic has been discussed and several examples have been
shown as logic circuits. IMPLY logic differs from others
in the sense that an IMPLY gate in the schematic does
not map to its exclusive memristors, but rather relies
on sequential execution and resource sharing. From this
conceptional difference a need for a new notation for
IMPLY logic might arise. This notation has to take
the shared resources as well as computation time into
account. Such a notation should help analyzing IMPLY
logic circuits with respect to the sequential operations as
well as to the required resources1.

1For future work

6



VSet VCond

W1 W2 W1 W2 A B C
t1 1 0 0 0 1 0 0
t2 0 1 1 0 0 0 0
t3 1 0 0 0 0 1 0
t4 0 1 1 0 0 0 0
t5 1 0 0 0 0 0 1
t6 0 1 1 0 0 0 0
t7 1 0 0 1 0 0 0
t8 0 1 0 0 1 0 0
t9 0 1 0 0 0 1 0
t10 1 0 0 1 0 0 0
t11 0 1 0 0 1 0 0
t12 0 1 0 0 0 0 1
t13 1 0 0 1 0 0 0
t14 0 1 0 0 0 1 0
t15 0 1 0 0 0 0 1
t16 1 0 0 1 0 0 0
t17 0 1 1 0 0 0 0
t18 1 0 0 0 1 0 0
t19 1 0 0 0 0 1 0
t20 1 0 0 0 0 0 1
t21 0 1 1 0 0 0 0

TABLE III
PULSE TIMING FOR MEMRISTIVE 3-INPUT PARITY FUNCTION

(FIGURE 9)

V. RELATED WORK

A solid discussion of different synthesis procedures
and the required number of memristors and computation
step was done by Lehtonen [6]. The following paragraph
will briefly summarize his ideas and results.

Contrary to [7] were it was argued that all boolean
functions can be computed by using two working mem-
ristors only, [6] was actually demonstrating the trade-off
between computation time and memristor count. Both,
SOP and POS like methods, have been discussed and was
compared at the three input parity function. By keeping
the number of memristors to a minimum, both methods
do not differ much in performance. Significant improve-
ments were achieved with two different approaches.

The first one is to have complementary inputs. This
means that for every input signal two memristors are
required holding the complementary information. This
doubles the number of input memristors, but avoids
computation time for inverting signals. This approach
alone can, depending on the boolean function, gain some
improvement. However, in combination with the next
method the best results could be achieved.

This approach was called Multi-Input Implication.
When looking at the physical implementation of the
memristors together with resistor RG (see figure 5) one

Fig. 14. Multi Input Implication - (a) both input memristors open,
working memristor can switch; (b) one input memristor open, one
closed. Working memristor cannot switch

can extend this to having multiple input memristors
connected to this line. In case the working memristor
is in the logical state ’0’ (high resistance), it switches
to logical ’1’ if the input memristor is in state ’0’ and
stays in the same state if the input is logic ’1’ (low
resistance). Now one can think of driving the working
memristor with VSet and multiple input memristors with
VCond. If all inputs are logic ’0’ (high resistance) this
does not affect the voltage level over RG and the working
memristor can switch. If one or more input memristors
are logic ’1’ the voltage level over RG is nearly VCond

and prevents the working memristor from switching.
This approach maps well to OR logic as the working
memristor switches if at least one input is ’1’ and stays
’0’ if and only if all inputs are ’0’. (This consideration
neglected the detailed discussion of the voltage drop
over RG induced by each input memristor. As parallel
driven resistors/memristors will result in an overall lower
resistance this would affect the ratio between memristors
and RG. But this is a design choice to make and depends
on the memristor technology used)

VI. FUTURE WORK

All methods presented in this paper are based on
standard logic optimization tools for SOP and POS. In
[2] it was argued that simply replacing NAND and OR
gates with IMPLY gates might not result in the optimal
solution. A DAG based optimization routine has been
presented by them to address this issue.

As Lehtonen and Laiho covered most standard op-
timization methods for memristive logic future work

7



should focus on either optimizing solutions based on
SOP and POS in a second step (like in [2]) or to create
new methods that address the covering problem with
respect to IMPLY logic in the first place. This means
that one does not optimize for AND/OR and simply
replace the gates, but try to map a function directly to
IMPLY gates. As was shown by Lehtonen, keeping the
number of input and working memristors flexible can
result in significant increased performance. Therefore
any future optimization algorithms should allow for a
flexible number of memristors.

REFERENCES

[1] Julien Borghetti, Gregory S. Snider, Philip J. Kuekes, J. Joshua
Yang, Duncan R. Stewart, and R. Stanley Williams. /‘memris-
tive/’ switches enable /‘stateful/’ logic operations via material
implication. Nature, 464:873 –876, 4 2010.

[2] A. Chattopadhyay and Z. Rakosi. Combinational logic synthesis
for material implication. In VLSI and System-on-Chip (VLSI-
SoC), 2011 IEEE/IFIP 19th International Conference on, pages
200 –203, oct. 2011.

[3] L. Chua. Memristor-the missing circuit element. Circuit Theory,
IEEE Transactions on, 18(5):507 – 519, sep 1971.

[4] S. Kvatinsky, A. Kolodny, U.C. Weiser, and E.G. Friedman.
Memristor-based imply logic design procedure. In Computer
Design (ICCD), 2011 IEEE 29th International Conference on,
pages 142 –147, oct. 2011.

[5] E. Lehtonen and M. Laiho. Stateful implication logic with
memristors. In Nanoscale Architectures, 2009. NANOARCH
’09. IEEE/ACM International Symposium on, pages 33 –36, july
2009.

[6] E. Lehtonen, J.H. Poikonen, and M. Laiho. Two memristors
suffice to compute all boolean functions. Electronics Letters,
46(3):239 –240, 4 2010.

[7] J.H. Poikonen, E. Lehtonen, and M. Laiho. On synthesis of
boolean expressions for memristive devices using sequential
implication logic. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 31(7):1129 –1134, july
2012.

[8] Gregory S.;Stewart Duncan R.;Williams R. Stanley Strukov,
Dmitri B.;Snider. The missing memristor found. Nature, 453:80–
83, may 2008.

8


